Auxillary Model Building: Content & Convergent Evidence

In this post we provide the results of the mixed-effects model building process applied in our Content & Convergent Evidence Study to answer research questions about differences in words correct per minute (WCPM) scores between three scoring methods, and between passage lenghts, and differences in time duration between three scoring methods.

Joseph F. T. Nese https://education.uoregon.edu/people/faculty/jnese (University of Oregon)https://www.uoregon.edu/ , Akihito Kamata https://www.smu.edu/simmons/AboutUs/Directory/CORE/Kamata (Southern Methodist University)https://www.smu.edu/
04-06-2019

Table of Contents


Introduction

The purpose of this report is to provide the results of the mixed-effects model building process applied in our Content & Convergent Evidence Study to answer the following research questions.

1a. Are there differences at the passage-level in WCPM between the human scoring criterion versus traditional or ASR scoring of traditional CBM-R and CORE passages (i.e., scoring method)?

1b. Are there differences at the passage-level in WCPM between the traditional CBM-R and CORE passages (i.e., passage length)?

  1. Are there differences at the passage-level in time duration between the human scoring criterion versus traditional or ASR scoring of traditional CBM-R and CORE passages?

In response to these Research Questions, we used lme4 to apply a mixed-effects model separately for each of Grades 2 through 4 and each outcome, WCPM and time duration (3 grades x 2 outcomes = six modeling processes).

For a full description of the purpose and procedures of the Content & Convergent Evidence Study, go here.

Random Effects

Summary of Random Effects Findings

For both WCPM and time and all Grades 2 through 4, the model with random effects for both students and passages statistically improved the model fit compared to models with a random effect for either students or passages.

WCPM

We began by comparing unconditional models for WCPM and time with and without random-effects for student and passage.

Here are the WCPM results for Grades 2 through 4 for the model with a random effect for students:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 98859.3  98881.2 -49426.6  98853.3    10995 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.9728 -0.5922 -0.0675  0.5346  9.5737 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1418.1   37.66   
 Residual                417.3   20.43   
Number of obs: 10998, groups:  student_id, 261

Fixed effects:
            Estimate Std. Error t value
(Intercept)   85.116      2.341   36.36

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
133002.6 133025.3 -66498.3 132996.6    14370 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.4816 -0.5997 -0.0424  0.5401  9.7405 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1183.7   34.41   
 Residual                551.9   23.49   
Number of obs: 14373, groups:  student_id, 323

Fixed effects:
            Estimate Std. Error t value
(Intercept)  110.850      1.926   57.57

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
129443.5 129466.1 -64718.7 129437.5    13989 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.8352 -0.6069 -0.0308  0.5630  9.3287 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1465.0   38.28   
 Residual                547.7   23.40   
Number of obs: 13992, groups:  student_id, 315

Fixed effects:
            Estimate Std. Error t value
(Intercept)  132.271      2.167   61.05

Here are the WCPM results for Grades 2 through 4 for the model with a random effect for passages:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
112593.3 112615.2 -56293.7 112587.3    10995 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4192 -0.7312 -0.0687  0.6209  5.1728 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept)   74.8    8.649  
 Residual               1607.2   40.090  
Number of obs: 10998, groups:  passage_id, 107

Fixed effects:
            Estimate Std. Error t value
(Intercept)   88.627      0.922   96.13

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
146393.2 146415.9 -73193.6 146387.2    14370 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.2933 -0.6843 -0.0380  0.6401  5.9000 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept)  147.5   12.15   
 Residual               1521.6   39.01   
Number of obs: 14373, groups:  passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)  111.495      1.225   91.05

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
145151.5 145174.1 -72572.7 145145.5    13989 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.2986 -0.6868 -0.0305  0.6484  4.9736 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept)  125.9   11.22   
 Residual               1841.3   42.91   
Number of obs: 13992, groups:  passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)   132.47       1.15   115.2

Here are the WCPM results for Grades 2 through 4 for the model with a random effect for both students and passages:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 97118.2  97147.5 -48555.1  97110.2    10994 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.5168 -0.5670 -0.0334  0.5334  9.7353 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1424.85  37.747  
 passage_id (Intercept)   80.06   8.948  
 Residual                344.26  18.554  
Number of obs: 10998, groups:  student_id, 261; passage_id, 107

Fixed effects:
            Estimate Std. Error t value
(Intercept)    84.92       2.50   33.97

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
129517.7 129548.0 -64754.9 129509.7    14369 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.0945 -0.5666 -0.0190  0.5527 11.0883 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1196.0   34.58   
 passage_id (Intercept)  147.6   12.15   
 Residual                418.8   20.46   
Number of obs: 14373, groups:  student_id, 323; passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)  110.847      2.265   48.94

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
126698.1 126728.3 -63345.1 126690.1    13988 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.0317 -0.5682 -0.0011  0.5730  9.8824 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 1461.2   38.23   
 passage_id (Intercept)  117.4   10.84   
 Residual                436.5   20.89   
Number of obs: 13992, groups:  student_id, 315; passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)  132.351      2.405   55.03

Model Comparison Tests

We conducted deviances tests, comparing the model with a random effect for students to the model with random effects for both students and passages.


$`Grade 2`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 98859 98881 -49427    98853                            
.y  4 97118 97147 -48555    97110  1743      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 133003 133025 -66498   132997                             
.y  4 129518 129548 -64755   129510 3486.8      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 129443 129466 -64719   129437                             
.y  4 126698 126728 -63345   126690 2747.3      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And comparing the model with a random effect for passages to the model with random effects for both students and passages.


$`Grade 2`
Data: .
Models:
.x: wcpm ~ 1 + (1 | passage_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df    AIC    BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 112593 112615 -56294   112587                            
.y  4  97118  97147 -48555    97110 15477      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: wcpm ~ 1 + (1 | passage_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df    AIC    BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 146393 146416 -73194   146387                            
.y  4 129518 129548 -64755   129510 16877      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: wcpm ~ 1 + (1 | passage_id)
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id)
   Df    AIC    BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 145151 145174 -72573   145145                            
.y  4 126698 126728 -63345   126690 18455      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Our conclusion was that the addition of student and passage as random effects statistically improved the model fit.


By evaluating the random effects, we found that 68% to 77% of the variance was between students, while only 4% to 8% of the variance was between passages, and 19% to 24% was residual variance. Thus, most of the variance was between students for these WCPM models. See below for WCPM ICC estimates.


$`Grade 2`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id   1425.   0.77
2 var_(Intercept).passage_id passage_id     80.1  0.04
3 var_Observation.Residual   Residual      344.   0.19

$`Grade 3`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id    1196.  0.68
2 var_(Intercept).passage_id passage_id     148.  0.08
3 var_Observation.Residual   Residual       419.  0.24

$`Grade 4`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id    1461.  0.73
2 var_(Intercept).passage_id passage_id     117.  0.06
3 var_Observation.Residual   Residual       437.  0.22

Time Duration

Here are the time results for Grades 2 through 4 for the model with a random effect for students:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 62874.6  62895.3 -31434.3  62868.6     7329 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.2583 -0.6609 -0.2481  0.4011  7.2226 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept)  88.23    9.393  
 Residual               286.41   16.924  
Number of obs: 7332, groups:  student_id, 261

Fixed effects:
            Estimate Std. Error t value
(Intercept)  30.7336     0.6185   49.69

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 79817.2  79838.7 -39905.6  79811.2     9579 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.0972 -0.6882 -0.2811  0.4024  7.8302 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept)  60.64    7.787  
 Residual               225.46   15.015  
Number of obs: 9582, groups:  student_id, 323

Fixed effects:
            Estimate Std. Error t value
(Intercept)  25.4726     0.4614    55.2

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 75069.5  75091.0 -37531.8  75063.5     9325 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1465 -0.6976 -0.3711  0.4212  9.1010 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept)  34.15    5.844  
 Residual               171.50   13.096  
Number of obs: 9328, groups:  student_id, 315

Fixed effects:
            Estimate Std. Error t value
(Intercept)  21.3739     0.3575   59.79

Here are the time results for Grades 2 through 4 for the model with a random effect for passages:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 59003.7  59024.4 -29498.9  58997.7     7329 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.1058 -0.5891 -0.1893  0.4373  8.8472 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept) 197.7    14.06   
 Residual               171.6    13.10   
Number of obs: 7332, groups:  passage_id, 107

Fixed effects:
            Estimate Std. Error t value
(Intercept)   30.427      1.368   22.24

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 71286.8  71308.3 -35640.4  71280.8     9579 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.3827 -0.5308 -0.1697  0.3302 14.1183 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept) 180.67   13.44   
 Residual                94.08    9.70   
Number of obs: 9582, groups:  passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)   25.167      1.309   19.22

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 65285.4  65306.9 -32639.7  65279.4     9325 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.8478 -0.5187 -0.1711  0.3293 12.7341 

Random effects:
 Groups     Name        Variance Std.Dev.
 passage_id (Intercept) 140.25   11.843  
 Residual                60.34    7.768  
Number of obs: 9328, groups:  passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)   21.129      1.153   18.32

Here are the time results for Grades 2 through 4 for the model with a random effect for both students and passages:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 54058.8  54086.4 -27025.4  54050.8     7328 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.1990 -0.4620 -0.0278  0.3851  9.5112 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept) 104.14   10.205  
 passage_id (Intercept) 207.99   14.422  
 Residual                76.09    8.723  
Number of obs: 7332, groups:  student_id, 261; passage_id, 107

Fixed effects:
            Estimate Std. Error t value
(Intercept)   31.151      1.535   20.29

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 64459.5  64488.2 -32225.8  64451.5     9578 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-7.5167 -0.4702 -0.0199  0.4023  9.5565 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept)  73.67    8.583  
 passage_id (Intercept) 184.60   13.587  
 Residual                40.04    6.328  
Number of obs: 9582, groups:  student_id, 323; passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)   25.382      1.405   18.06

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Data: .

     AIC      BIC   logLik deviance df.resid 
 58507.8  58536.3 -29249.9  58499.8     9324 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.4615 -0.4766 -0.0312  0.4094 17.7257 

Random effects:
 Groups     Name        Variance Std.Dev.
 student_id (Intercept)  35.77    5.980  
 passage_id (Intercept) 141.32   11.888  
 Residual                25.54    5.053  
Number of obs: 9328, groups:  student_id, 315; passage_id, 106

Fixed effects:
            Estimate Std. Error t value
(Intercept)   21.105      1.204   17.52

Model Comparison Tests

We conducted deviances tests, comparing the model with a random effect for students to the model with random effects for both students and passages.


$`Grade 2`
Data: .
Models:
.x: time ~ 1 + (1 | student_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 62875 62895 -31434    62869                             
.y  4 54059 54086 -27025    54051 8817.8      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: time ~ 1 + (1 | student_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 79817 79839 -39906    79811                            
.y  4 64460 64488 -32226    64452 15360      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: time ~ 1 + (1 | student_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance Chisq Chi Df Pr(>Chisq)    
.x  3 75070 75091 -37532    75064                            
.y  4 58508 58536 -29250    58500 16564      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And comparing the model with a random effect for passages to the model with random effects for both students and passages.


$`Grade 2`
Data: .
Models:
.x: time ~ 1 + (1 | passage_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 59004 59024 -29499    58998                             
.y  4 54059 54086 -27025    54051 4946.9      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: time ~ 1 + (1 | passage_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 71287 71308 -35640    71281                             
.y  4 64460 64488 -32226    64452 6829.3      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: time ~ 1 + (1 | passage_id)
.y: time ~ 1 + (1 | student_id) + (1 | passage_id)
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  3 65285 65307 -32640    65279                             
.y  4 58508 58536 -29250    58500 6779.7      1  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Our conclusion was that the addition of student and passage as random effects statistically improved the model fit.


By evaluating the random effects, we found that 18% to 27% of the variance was between students, while only 54% to 70% of the variance was between passages, and 13% to 20% was residual variance. Thus, the majority of the variance was between passages, which is intuitive because time duration and passage length (word count) are highly and directly correlated.
See below for time ICC estimates.


$`Grade 2`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id    104.   0.27
2 var_(Intercept).passage_id passage_id    208.   0.54
3 var_Observation.Residual   Residual       76.1  0.2 

$`Grade 3`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id     73.7  0.25
2 var_(Intercept).passage_id passage_id    185.   0.62
3 var_Observation.Residual   Residual       40.0  0.13

$`Grade 4`
# A tibble: 3 x 4
  term                       group      estimate   icc
  <chr>                      <chr>         <dbl> <dbl>
1 var_(Intercept).student_id student_id     35.8  0.18
2 var_(Intercept).passage_id passage_id    141.   0.7 
3 var_Observation.Residual   Residual       25.5  0.13

Fixed Effects

To the model with random effects for student and passages, we then added fixed-effects for passage length (four levels: easyCBM, Short, Medium, and Long) and scoring method (three levels: ASR, Recording, and Traditional), and compared it to a model that included an interaction term for passage length x scoring method.

Summary of Fixed Effects Findings

For both WCPM and time and all Grades 2 through 4, the model with the addition of the interaction effect statistically improved the model fit compared to model without the interaction. Thus, our final model for both outcomes and all grades included random effects for student and passage, and fixed effects for passage length, scoring method, and their interaction.

WCPM

Here are the WCPM results for Grades 2 through 4 for the model with a random effect for students and passages, and fixed effects for passage_length and scoring_method:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 96842.53  96908.28 -48412.27  96824.53     10989 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 37.753  
 passage_id (Intercept)  8.831  
 Residual               18.309  
Number of obs: 10998, groups:  student_id, 261; passage_id, 107
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
              92.367               -12.898               -10.224  
 passage_lengthshort    modewcpm_criterion  modewcpm_traditional  
             -11.383                 4.060                 7.226  

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
128999.85 129068.01 -64490.93 128981.85     14364 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 34.59   
 passage_id (Intercept) 11.76   
 Residual               20.09   
Number of obs: 14373, groups:  student_id, 323; passage_id, 106
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
             110.857                -7.909                -7.357  
 passage_lengthshort    modewcpm_criterion  modewcpm_traditional  
              -1.782                 3.872                 9.413  

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
126025.12 126093.04 -63003.56 126007.12     13983 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 38.23   
 passage_id (Intercept) 10.40   
 Residual               20.38   
Number of obs: 13992, groups:  student_id, 315; passage_id, 106
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
             118.226                 3.719                 8.612  
 passage_lengthshort    modewcpm_criterion  modewcpm_traditional  
              11.433                 3.958                10.959  

And here are the WCPM results for Grades 2 through 4 for the model with a random effect for students and passages, and fixed effects for passage_length, scoring_method, and their interaction:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 96751.95  96861.53 -48360.97  96721.95     10983 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 37.755  
 passage_id (Intercept)  8.835  
 Residual               18.221  
Number of obs: 10998, groups:  student_id, 261; passage_id, 107
Fixed Effects:
                              (Intercept)  
                                   92.647  
                       passage_lengthlong  
                                  -13.272  
                     passage_lengthmedium  
                                  -10.437  
                      passage_lengthshort  
                                  -11.682  
                       modewcpm_criterion  
                                   15.717  
                     modewcpm_traditional  
                                   -5.271  
    passage_lengthlong:modewcpm_criterion  
                                  -10.998  
  passage_lengthmedium:modewcpm_criterion  
                                  -10.977  
   passage_lengthshort:modewcpm_criterion  
                                  -12.702  
  passage_lengthlong:modewcpm_traditional  
                                   12.119  
passage_lengthmedium:modewcpm_traditional  
                                   11.612  
 passage_lengthshort:modewcpm_traditional  
                                   13.598  

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
128959.43 129073.03 -64464.72 128929.43     14358 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 34.59   
 passage_id (Intercept) 11.76   
 Residual               20.05   
Number of obs: 14373, groups:  student_id, 323; passage_id, 106
Fixed Effects:
                              (Intercept)  
                                  112.670  
                       passage_lengthlong  
                                   -9.746  
                     passage_lengthmedium  
                                   -8.907  
                      passage_lengthshort  
                                   -3.785  
                       modewcpm_criterion  
                                   10.634  
                     modewcpm_traditional  
                                   -2.783  
    passage_lengthlong:modewcpm_criterion  
                                   -5.522  
  passage_lengthmedium:modewcpm_criterion  
                                   -6.941  
   passage_lengthshort:modewcpm_criterion  
                                   -7.291  
  passage_lengthlong:modewcpm_traditional  
                                   11.030  
passage_lengthmedium:modewcpm_traditional  
                                   11.588  
 passage_lengthshort:modewcpm_traditional  
                                   13.293  

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
125976.36 126089.55 -62973.18 125946.36     13977 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 38.23   
 passage_id (Intercept) 10.40   
 Residual               20.33   
Number of obs: 13992, groups:  student_id, 315; passage_id, 106
Fixed Effects:
                              (Intercept)  
                                  117.626  
                       passage_lengthlong  
                                    5.271  
                     passage_lengthmedium  
                                    9.673  
                      passage_lengthshort  
                                   11.496  
                       modewcpm_criterion  
                                   13.904  
                     modewcpm_traditional  
                                    2.812  
    passage_lengthlong:modewcpm_criterion  
                                   -9.767  
  passage_lengthmedium:modewcpm_criterion  
                                   -9.913  
   passage_lengthshort:modewcpm_criterion  
                                  -10.273  
  passage_lengthlong:modewcpm_traditional  
                                    5.109  
passage_lengthmedium:modewcpm_traditional  
                                    6.728  
 passage_lengthshort:modewcpm_traditional  
                                   10.082  

Model Comparison Test

We conducted a deviance test, comparing the model with main effects only to the model with main effects and their interaction.


$`Grade 2`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  9 96843 96908 -48412    96825                             
.y 15 96752 96862 -48361    96722 102.58      6  < 2.2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  9 129000 129068 -64491   128982                             
.y 15 128959 129073 -64465   128929 52.421      6  1.534e-09 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: wcpm ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df    AIC    BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  9 126025 126093 -63004   126007                             
.y 15 125976 126090 -62973   125946 60.762      6  3.151e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Our conclusion was that the addition of the passage_length x scoring_method statistically improved the model fit. Thus, our final WCPM included random effects for students and passages, and fixed effects for passage_length, scoring_method, and a passage_length x scoring_method interaction.


Time

Here are the time results for Grades 2 through 4 for the model with a random effect for students and passages, and fixed effects for passage_length and scoring_method:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 53746.78  53801.98 -26865.39  53730.78      7324 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 10.141  
 passage_id (Intercept)  3.956  
 Residual                8.690  
Number of obs: 7332, groups:  student_id, 261; passage_id, 107
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
              55.163                 3.546               -19.186  
 passage_lengthshort  modesecs_traditional  
             -33.755                -1.512  

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 64126.45  64183.80 -32055.23  64110.45      9574 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 8.530   
 passage_id (Intercept) 3.419   
 Residual               6.309   
Number of obs: 9582, groups:  student_id, 323; passage_id, 106
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
              55.435                -5.847               -25.952  
 passage_lengthshort  modesecs_traditional  
             -39.970                -1.044  

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 58103.73  58160.85 -29043.86  58087.73      9320 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 5.974   
 passage_id (Intercept) 2.160   
 Residual               5.036   
Number of obs: 9328, groups:  student_id, 315; passage_id, 106
Fixed Effects:
         (Intercept)    passage_lengthlong  passage_lengthmedium  
             55.7996              -13.8480              -31.4367  
 passage_lengthshort  modesecs_traditional  
            -43.2396               -0.8251  

And here are the time results for Grades 2 through 4 for the model with a random effect for students and passages, and fixed effects for passage_length, scoring_method, and their interaction:


$`Grade 2`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 53730.10  53806.00 -26854.05  53708.10      7321 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 10.141  
 passage_id (Intercept)  3.957  
 Residual                8.676  
Number of obs: 7332, groups:  student_id, 261; passage_id, 107
Fixed Effects:
                              (Intercept)  
                                   52.493  
                       passage_lengthlong  
                                    6.758  
                     passage_lengthmedium  
                                  -16.491  
                      passage_lengthshort  
                                  -31.123  
                     modesecs_traditional  
                                    3.826  
  passage_lengthlong:modesecs_traditional  
                                   -6.423  
passage_lengthmedium:modesecs_traditional  
                                   -5.389  
 passage_lengthshort:modesecs_traditional  
                                   -5.263  

$`Grade 3`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 64093.15  64171.99 -32035.57  64071.15      9571 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 8.531   
 passage_id (Intercept) 3.420   
 Residual               6.296   
Number of obs: 9582, groups:  student_id, 323; passage_id, 106
Fixed Effects:
                              (Intercept)  
                                   52.626  
                       passage_lengthlong  
                                   -2.721  
                     passage_lengthmedium  
                                  -22.986  
                      passage_lengthshort  
                                  -37.260  
                     modesecs_traditional  
                                    4.572  
  passage_lengthlong:modesecs_traditional  
                                   -6.253  
passage_lengthmedium:modesecs_traditional  
                                   -5.929  
 passage_lengthshort:modesecs_traditional  
                                   -5.419  

$`Grade 4`
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: 
time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length +  
    mode + passage_length:mode
   Data: .
      AIC       BIC    logLik  deviance  df.resid 
 58080.42  58158.97 -29029.21  58058.42      9317 
Random effects:
 Groups     Name        Std.Dev.
 student_id (Intercept) 5.975   
 passage_id (Intercept) 2.160   
 Residual               5.027   
Number of obs: 9328, groups:  student_id, 315; passage_id, 106
Fixed Effects:
                              (Intercept)  
                                   53.552  
                       passage_lengthlong  
                                  -11.367  
                     passage_lengthmedium  
                                  -29.152  
                      passage_lengthshort  
                                  -41.033  
                     modesecs_traditional  
                                    3.669  
  passage_lengthlong:modesecs_traditional  
                                   -4.961  
passage_lengthmedium:modesecs_traditional  
                                   -4.568  
 passage_lengthshort:modesecs_traditional  
                                   -4.412  

Model Comparison Test

We conducted a deviance test, comparing the model with main effects only to the model with main effects and their interaction.


$`Grade 2`
Data: .
Models:
.x: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  8 53747 53802 -26865    53731                             
.y 11 53730 53806 -26854    53708 22.675      3  4.719e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 3`
Data: .
Models:
.x: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  8 64126 64184 -32055    64110                             
.y 11 64093 64172 -32036    64071 39.308      3  1.493e-08 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

$`Grade 4`
Data: .
Models:
.x: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.x:     mode
.y: time ~ 1 + (1 | student_id) + (1 | passage_id) + passage_length + 
.y:     mode + passage_length:mode
   Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
.x  8 58104 58161 -29044    58088                             
.y 11 58080 58159 -29029    58058 29.306      3  1.932e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Our conclusion was that the addition of the passage_length x scoring_method statistically improved the model fit. Thus, our final time included random effects for students and passages, and fixed effects for passage_length, scoring_method, and a passage_length x scoring_method interaction.

Acknowledgments

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A140203 to the University of Oregon. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.